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Abstract

We provide the first empirical application of a new approach proposed by Lee (2007) to estimate peer effects
in a linear-in-means model. The approach allows to control for group-level unobservables and to solve the
reflection problem, without imposing ad hoc exclusion restrictions or requiring peers to be randomly assigned
to groups. We investigate the presence of peer effects in student achievement in mathematics, science, french
and history at the end of secondary school in the province of Quebec (Canada). We use an original dataset that
covers three fourth of all schools in Quebec and contains test scores to the standardized provincial exam required
for graduation. We estimate the model using both maximum likelihood and methods based on instrumental
variables. We find evidence of peer effects. The endogenous peer effect is positive, when significant, and some
contextual peer effects matter. Issues of weak identification that may be present in our estimates are analyzed
using calibrated Monte Carlo simulations. We find that identification is much helped by a high variance in peer
group sizes.
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1 Introduction

Evaluating peer effects in academic achievement is important for parents, teachers and schools. These effects

also play a prominent role in policy debates concerning ability grouping, racial integration and school vouchers.

However, despite a growing literature on the subject (e.g., Sacerdote 2001, Hanushek et al. 2003, Angrist and

Lang 2004, Stinebrickner and Stinebrickner 2006, Ammermueller and Pischke 2009), the evidence regarding the

magnitude of peer effects on student achievement is mixed. This lack of consensus partly reflects various econo-

metric issues that any empirical study on peer effects must address. Identifying and estimating peer effects raises

at least three challenges. First, the relevant peer groups must be determined. Who interacts with whom? Second,

peer effects must be identified from confounding factors. Especially, spurious correlation between students’ out-

comes may arise from self-selection into groups and from common unobserved shocks. Third, identifying the

precise type of peer effect at work may be hard. The reflection problem may prevent separating contextual effects,

i.e., the influence of peers’ characteristics, from endogenous effects, i.e., the influence of peers’ outcomes, see

Manski (1993). Researchers have used various approaches to solve these three issues; we discuss the methods

and results of previous studies in more detail in the next section. As will be clear, however, there is no simple

methodological answer to these three challenges.

In this paper, we provide, to our knowledge, the first application of a novel approach developed by Lee (2007)

for identifying and estimating peer effects. This approach is promising, as it allows to solve the problem of cor-

related effects and the reflection problem with standard data and without imposing ad hoc exclusion restrictions.

The method does rely on structural assumptions, however, which makes its confrontation to real data particularly

important. We have collected for this analysis original administrative data on test scores at the end of secondary

school in the Canadian province of Quebec. We investigate the presence of peer effects in student achievement

in mathematics, science, french, and history by applying Lee (2007)’s approach. In the process, we also advance

our understanding of the method’s properties.

Our econometric model relies on two key assumptions. First, individuals interact in groups that are known

by the modeler. This means that the population of students is partitioned in groups (e.g., classes, grade levels)

and that students are affected by all others in their groups but by none outside of it. This assumption is typical

in studies of academic achievement but clearly arises from data constraints.1 Second, individual outcome is

determined by a linear-in-means model with group fixed effects. Thus, the test score of a student is affected
1Recent studies have looked at peer effects within finer social subdivisions such as networks of friendships among students, see Lin

(2008) and Calvó-Armengol et al. (2009) for applications, and Bramoullé et al. (2009) and Lee et al. (2009) for theoretical analyses.



by his characteristics and by the average test score and characteristics in his peer group. In addition, it may

be affected by any kind of correlated group-level unobservable. Lee (2007) shows that peer effects are fully

identified in such a framework. The intuition for this result is the following. To address the problem of correlated

effects, the group-level fixed effects must first be differentiated out. This removes any factor common to everyone

in the group. In this model, however, a student is not assumed to be one of his own peer. This creates individual

variations in average peer attributes, which are mechanically greater in smaller groups.2 These variations survive

the elimination of common unobservables. They lead to a non-linear impact of group sizes on reduced-form

coefficients which can be used to recover the structural parameters.3,4 More precisely, contextual and endogenous

peer effects are identified when there are at least three groups of different sizes, see Davezies et al. (2009). When

identified, the model can then be estimated through methods adapted from spatial econometrics, e.g. Cliff and

Ord (1981).

We use administrative data on academic achievement for a large sample of secondary schools in the province

of Quebec obtained from the Ministry of Education, Recreation and Sports (MERS). Our dependent variables are

individual scores on four standardized tests taken in June 2005 (Math, Sciences, French and History) by fourth

and fifth grade secondary school students. All 4th and 5th grade students in the province must pass these tests to

graduate.5 One advantage of these data is that all candidates in the province take the same exams, no matter their

school and location. This feature effectively allows us to consider test scores as draws of a common underlying

distribution. Another advantage is that our sample is representative and quite large. We have the scores of all

students for a 75% random sample of Quebec schools which, over the four subjects, yields 194,553 test scores

for 116,534 students. In terms of interaction patterns, the structure of the data leads us to make the following

natural assumption. We assume that the peer group of a student contains all other students in the same school

qualified to take the same test in June 2005. In practice, a small number of students postpone test-taking to

August 2005. We extend Lee’s methodology in the empirical modelling to address this issue. However, since

the difference between observed group sizes and actual group sizes is small, the correction has little effect on the
2In contrast, these variations are absent in the model studied by Manski (1993). Manski studies a linear-in-expectations model which,

in terms of identification, has the same properties as a linear-in-means model where the individual is included in his peer group. In this
case, group fixed effects wash out both types of peer effects and identification fails to hold.

3This result is to be distinguished from the idea that the group size is a factor in a school’s production function (e.g., Angrist and Lavy
1999, Hoxby 2000b, Krueger 2003). In our model the effects of group sizes which are separable from the peer effects are controlled for
by fixed effects in the structural model.

4This method also differs from the variance contrast approach developed by Graham (2008), which builds on Glaeser et al. (1996).
The basic idea in this approach is that peer effects will induce intragroup dependencies in behavior that introduce variance restrictions
on the error terms. These restrictions allow to identify the composite (endogenous + contextual) social interaction effects under the
assumption that the variance matrix parameters are independent of the reference group size.

5These tests are taken once all courses in a subject matter are completed. Success to these tests only partly determine secondary school
graduation, which also depends on performance in year-long evaluations.
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results. Following Lee (2007), we estimate the model in two ways: through generalized two-stage least squares

(G2SLS)6 and, under stronger parametric conditions, through conditional maximum likelihood (CML).

Overall, we find that the CML method yields relatively precise estimates of peer effects.7 In contrast, es-

timates from instrumental variables methods are quite imprecise with our data.8 Based on CML estimates, the

endogenous peer effect is positive, significant and quite high in Math (0.82) and History (0.65) but not signif-

icantly different from zero in French (0.33) and Science (−0.23).9 These results are on the high side, but still

within the spectrum, of estimates obtained in other studies. We also find evidence that contextual peer effects

matter. For instance, interacting with older students usually has a negative effect on own test score independent of

the impact of others’ scores. While endogenous peer effects may capture direct emulation and imitation, contex-

tual peer effects may reflect more indirect social interactions. In any case, this approach allows us to test typical

restrictions used in the literature to get around the reflection problem. We often reject these restrictions in favor

of the full, unrestricted model. This shows, a posteriori, the interest of disentangling the different types of peer

effects.

One potentially important limitation of the method, however, is that it may not perform well when group sizes

are large, see Lee (2007). More precisely, convergence in distribution of the peer effect estimates may occur at

low rates when the number of groups is not much larger than average group size. Ratio between the two lies

between 2.36 and 7.23 in our sample, so weak identification may be an issue. On the other hand, there is also

much variance in group sizes in our samples. We suspect that this dispersion helps identification. We study this

issue systematically through Monte-Carlo simulations. We find that indeed increasing group size variance has a

strong positive impact on the precision of estimates. In addition, simulations calibrated on our data indicate that

these small-sample problems are likely not an issue for our main empirical results.

The remainder of the paper is organized as follows. We discuss past research in section 2 and present our

econometric model and the estimation methods in section 3. We describe our dataset in section 4. We present

our empirical results in section 5 and run Monte Carlo experiments in section 6. We conclude in section 7.
6The instruments are directly derived from the structural model (Kelejian and Prucha 1998, Lee 2003, Lee 2007), see section 3.2.2 for

details.
7The effect of individual characteristics, such as gender, age, and socioeconomic background, on test scores are precisely estimated

by either method, and these estimates generally conform to expectations.
8The higher precision of CML estimates is consistent with results in Lee (2007) showing that CML estimators are asymptotically

more efficient than IV estimators.
9For the French test, we also look at an alternative formulation under which the endogenous effect is equal to 0.51 and is significant.
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2 Previous research

In this section, we give a brief overview of the recent literature on student achievement and peer effects, and we

explain how our study complements and enhances current knowledge on peer interactions in academic outcomes.

As discussed above, measuring peer effects is complex as it raises three basic interrelated problems: the

determination of reference groups, the problem of correlated effects and the reflection problem. The choice

of reference groups is often severely constrained by the availability of data. In particular, there are still few

databases providing information on the students’ social networks; the Add Health dataset is an exception, see e.g.

Lin (2008) and Calvo-Armengol et al. (2009).10 For this reason, many studies focus on the grade-within-school

level (e.g., Hoxby 2000a, Hanushek et al. 2003, Angrist and Lang 2004).11 Other studies analyze peer effects at

the classroom level (e.g., Kang 2007, Burke and Sass 2008, Atkinson et al. 2008, Ammermueller and Pischke

2009). Based on panel data covering Florida public school students in grades 3-10, Burke and Sass (2008) provide

some evidence that peer effects tend to be weaker at the grade level than at the classroom level. This suggests

two possible interpretations. On the one hand, learning and emulation effects between students are likely to be

stronger at the classroom level. On the other hand, spurious correlated effects may also be more important at

this level if the allocation of teachers and students to classes is not random (class-level selection biases). The

administrative data we use in this study do not provide information on classes or teachers. Therefore, we assume

that for each subject the relevant reference group for a student taking the test contains all other students in the

same school who have completed all courses in the subject matter by June 2005. Thus, given that the reference

group is likely to include students from other classes, one should probably expect peer effects to be smaller than

at the classroom level.12

Two main strategies have been used to handle the problem of correlated effects. A first strategy has been

to exploit data where students are randomly or quasi-randomly assigned within their groups (e.g., Boozer and

Cacciola 2001, Sacerdote 2001, Zimmerman 2003, Kang 2007). Results on the impact of contextual effects us-

ing randomly assigned roommates as peers are usually low though significant. Stinebrickner and Stinebrickner

(2006) have argued that these studies tend to underestimate However, true peer effects as it is not clear that roo-

mates represent peers of potential influence. Ammermueller and Pischke (2009) estimate peer effects for fourth

grader in six European countries. They introduce school fixed effects to take into account nonrandom assignment
10Bramoullé et al. (2009) and Lee et al. (2009) determine conditions under which endogenous and contextual peer effects are identified

when students interact through a social network known by the modeller and when correlated effects are fixed within subnetworks.
11These studies usually do not have information on teachers and classrooms.
12In fact, at the end of secondary level, classes and teachers are usually different depending on the subject matter taught.
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of students across schools but they argue that there is no “teacher shopping” by parents or “student shopping”

by teachers within schools. Therefore students are roughly randomly assigned to classes once the school is cho-

sen and identification of contextual effects relies on variation across classes within schools. In our estimation

approach, we also introduce school fixed effects to capture the feature that schools are not formed randomly. As

in Ammermueller and Pischke’ study, we find it plausible to assume that students in a given secondary school

are randomly assigned to classes, when they reach grades 4 or 5.13 Therefore, in our econometric approach

we ignore the presence of a possible correlation between unobserved characteristics of teachers and of students

which could induce sorting biases in our estimates. A second strategy exploits the availability of large panel

administrative databases to introduce fixed individual, school, grade-within-school and cohort-by-grade effects

(e.g., Hoxby 2000a, Hanushek et al. 2003, Vigdor and Nechyba 2004, Carrell et al. 2008). In these studies,

contextual effects are typically identified by the mobility of students into and out of the school and by changes in

student circumstances over time (e.g., parents’ socioeconomic status). Of course, this approach cannot be used

in our study since we do not have access to panel data.

The reflection problem is handled using three main strategies. In most papers, researchers estimate a reduced-

form linear-in-means model, and no attempt is made to separate the contextual and endogenous peer effects. Only

composite parameters are estimated (Sacerdote 2001, Ammermueller and Pischke 2009). In a second strategy,

one uses instruments to obtain consistent estimates of the endogenous peer effect (e.g., Evans et al. 1992, Gaviria

and Raphael 2001, Atkinson et al. 2008). The problem here is to choose suitable instruments, that is, variables

which are correlated with the endogenous peer effect but not correlated with the error terms in the structural

model. For instance, Rivkin (2001) argues that the use of metropolitan-wide aggregate variables as instruments

in the Evans et al. (1992) study exacerbates the biases in peer effect estimates. In our paper, we provide some

results based on instrumental methods. However, our instruments are not ad hoc in the sense that they are

derived from the structure of the model. A third strategy is to use lagged peer achievement as a proxy for current

achievement (e.g., Hanushek et al. 2003, Burke and Sass 2008). One problem is that this approach does not work

when the error terms are autocorrelated. In any case, it requires panel data to be implemented.

In short, various strategies have been proposed to address the three basic issues that occur in the estimation

of peer effects. But most rely on strong assumptions that are difficult to motivate and may not hold in practice.

Some of them require panel data while others rely on experiments that randomly allocate students within their

peer group. This makes the results in Lee (2007) particularly interesting, as they show that peer effects may be
13Informal discussions with secondary schools’ administrators in the province of Quebec confirmed our intuition.
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fully identified even with observational data in cross-section. This paper advances the literature on peer effects

by providing the first application based on this new identification strategy.

3 Econometric model and estimation methods

3.1 Econometric model

We review and adapt the structural model suggested by Lee in the context of our application. Lee’s model builds

on and extends the standard linear-in-means model of peer effects (Moffitt 2001) to groups with various sizes.

The set of students {i = 1, ...M} is supposed to be partionned into groups of peers indexed by r = 1, ..., R. Let

Mr be the rtℎ group of peers, of size mr. All students in the same group have the same number of peers since

they interact with all others in the group. We assume that student i who belongs to group r is excluded from

his own reference group. Let Mri be student i’s group of peers, of size mr − 1.14 A peer is any fellow student

whose academic performance and personal characteristics may affect i’s performance. Let yri be the test score

obtained by student i. Let xri be a 1×K vector of characteristics of i and Xr be the mr×K matrix of individual

characteristics. For simplicity, the model is first presented with a unique characteristic (K = 1), which indicates

whether the child comes from a low-income family. Another departure from the linear-in-means model is the

inclusion of a term ®r that captures all group invariant unobserved variables (e.g., same learning environment,

similar preferences of school or motivation towards education). The error term ²ri reflects other unobservable

characteristics associated with i.

Importantly, we assume strict exogeneity of mr and {xri : i = 1, ...,mr} conditional on the unobserved

effect ®r, i.e., E(²ri∣ Xr,mr, ®r) =0. This exogeneity assumption can notably accomodate situations where

peer group size is endogenous. Suppose that, everything else equal, brighter students attend smaller schools,

i.e., schools where the cohort of students eligible to take the province-wide test in the subject matter (our peer

groups) is small. In this case, peer group size mr may well depend on unobserved common characteristics of the

student’s group, ®r : E(®r∣ Xr,mr) ∕=0. Our model allows for this type of correlation. However, conditional

on these common characteristics, peer group size mr is assumed to be independent of the student’s idiosyncratic

unobserved characteristics: E(²ri∣ Xr,mr, ®r) =0. We maintain this anonymity assumption throughout our

analysis.

We do not change any other assumption of the linear-in-means model. In particular, we assume that a stu-
14We thus have i ∈ Mr but i /∈ Mri.
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dent’s performance to the standardized test may be affected by the average performance in his group of reference,

by his family socioeconomic background, and by the average socioeconomic background in his group. Formally,

the structural model is given by:

yri = ®r + ¯

∑
j∈Mri

yrj

mr − 1
+ °xri + ±

∑
j∈Mri

xrj

mr − 1
+ ²ri, E(²ri∣ Xr,mr, ®r) =0, (1)

where ¯ captures the endogenous effect, ° the individual effect and ± the contextual effect. It is standard to

require that ∣¯∣ < 1. Except for this restriction (which is not imposed in our estimations and therefore could be

tested), the model does not impose any other constraints on the parameters.15

One problem we face in our sample is that we do not always observe the scores of all students within a group.

For instance, some students may postpone test-taking to the next session due to illness. We next extend our model

to allow for this possibility. Our setting is one where the total number of students (including those who postpone

test-taking) in each group is known, but we only observe the test scores of subsamples Nr of size nr of each

group Mr, with nr ≤ mr and
R∑

r=1
nr = N . We show how to adapt Lee’s analysis to this more general setting.

Let Lr be the complement of Nr, i.e., Lr = Mr −Nr.16 The structural equation becomes:

yri = ®̃r + ¯

∑
j∈Nri

yrj

mr − 1
+ °xri + ±

∑
j∈Nri

xrj

mr − 1
+ ²ir, E(²ri∣ Xr,mr, nr, ®r) =0, (2)

where ®̃r = ®r + ¯
∑

j∈Lr
yrj

mr−1 + ±
∑

j∈Lr
xrj

mr−1 is the new group fixed effect. Thus, even if we do not observe

test scores for all students in each group, results are not necessarily biased due to a selection effect. The key

observation is that in our model, effects stemming from unobserved individuals are the same for all students in

each peer group. They are therefore picked up by the group fixed effect.

To eliminate group-invariant correlated effects, we next apply a within transformation to eq. (2). In particular,

as we noted above, when the effect of group size is separable from peer and individual effects, it is captured by ®̃r.

The model can address the problem of selection or endogenous peer group formation. For instance, school choice

may depend on some unobserved factors specific to a school (e.g., reputation, unobserved quality) and determine

the type of students who are attracted by these schools. The advantage of the within transformation is that we

compare students of the same type. This transformation also allows to control for common environment effects.
15This structural model can be derived from a choice-theoretic approach where each student’s performance is obtained from the

maximisation of his quadratic utility function which depends on his individual characteristics, his performance and his reference group’s
mean performance and mean characteristics. This approach also assumes that social interactions have reached a noncooperative (Nash)
equilibrium at which expected performances are realized.

16If Nri denotes the group of peers of student i, we also have Lr = Mri −Nri.
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Resources available at the school level (e.g., teaching, physical infrastructure) may affect the performance of

all the students. Again, by comparing students within the same school, we can abstract from these effects.

Importantly, mean peer behavior and mean peer characteristics vary within groups as, by assumption, student i is

excluded from his reference group, that is, i /∈ Nri. In addition, these variations as mechanically smaller in larger

groups, reflecting the diminishing impact of an additional individual on group means.17 The within reduced form

equation for students in the rtℎ group is:

yri − ȳr =
(mr − 1)° − ±

mr − 1 + ¯
(xri − x̄r) +

mr − 1

mr − 1 + ¯
(²ri − ²̄r), (3)

where means ȳr, x̄r and ²̄r are computed over all observed students in the group. Note that only one composite

parameter can be recovered from the reduced form for each group size mr. At least three sizes are thus necessary

to identify the three structural parameters ¯, ° and ±.

An intuitive interpretation for the identification of the endogenous peer effect from contextual peer effects is

given in Bramoullé et al. (2009). In order to focus on the reflection problem, suppose that there are no correlated

effects and that we observe the scores of all students within a group (for all r, ®̃r = ®0). In the reduced form of

this simpler model, own academic achievement only depends on own characteristics (e.g., whether one is from a

low-income background) and the fraction of peers from a low-income background, as follows:

yri =
®0

1− ¯
+ [° +

¯(°¯ + ±)

(1− ¯)(mr − 1 + ¯)
]xri +

°¯ + ±

(1− ¯)(1 + ¯
mr−1)

x̄i + ºi, (4)

where ºi is the error term18 and where the proportion of peers from a low-income background x̄i is now com-

puted over all other observed students in the group, excluding student i. The effect of the parents’ background

xri may then be decomposed into a direct effect ° and an indirect effect that works through feedback effects:

when j belongs to i’s group, i’s background affects j’s academic achievement, which in turn, affects i’s aca-

demic achievement.19 The indirect effect decreases with group size mr and becomes negligible as this size

becomes larger. This reflects the diminishing role that i plays, by himself, in determining other students’ aca-

demic achievement when the size of the group grows. For a similar reason, the reduced form coefficient on the

fraction of low-income among i’s peers is increasing in the size of the group. As the role played by any peer

17Formally, ∣
∑

j∈Nri
xrj

mr−1
−

∑
j∈Nrk

xrj

mr−1
∣ = 1

mr−1
∣xi − xk∣ is decreasing with mr .

18After some algebraic manipulations, one shows that: ºi = [1 + ¯2

(1−¯)(mr−1+¯)
]²ri +

¯

(1−¯)(1+ ¯
mr−1

)
²i.

19This indirect effect itself has different channels: i’s background affects j’s achievement both directly through a contextual effect, and
indirectly through an endogenous effect (i.e., via the effect of i’s achievement on j’s achievement).
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decreases, the effect of the fraction of peers from a low-income background becomes larger. Thus, variation

in group sizes creates exogenous variation in the reduced form coefficients across groups which, in turn, yields

identification. At the limit, as group sizes (the mr’s) become infinitely large, we cannot identify the endogenous

peer effect from the contextual peer effect from the reduced-form equation (4). This suggests that the model may

suffer from weak identification when interactions are structured in groups with large sizes.

3.2 Estimation methods

3.2.1 CML Estimator

We consider estimation under both strong (Conditional Maximum Likelihood or CML) and weaker (Instrumental

Variables or IV) identification conditions.

To present CML and IV estimators, it is easier to express model (2) in matrix notations. We now allow

for any number of characteristics, so that ° is a K × 1 vector of individual effects and ± a K × 1 vector of

contextual ones. Recall that in this setting, students are affected by all others in their group and by none outside

of it. This means that the observed social interactions can be modelled as a N × N block-diagonal matrix

G = Diag(G1, ...,GR), such that for all r, Gr is comprised of elements grij = 1
mr−1 if i ∕= j and grii = 0.

In other terms, Gr = 1
mr−1(¶nr¶

′
nr

− Inr), where ¶nr is a nr × 1 vector of ones and Inr the identity matrix of

dimension nr. Model (2) can be re-written in matrix form as follows:

yr = ¶nr ®̃r + ¯Gryr +Xr° +GrXr± + ²r, (5)

where E(²r ∣ Xr,mr, nr, ®r)=0.

Applying the operator matrix Jr = Inr − 1
nr
¶nr¶

′
nr

allows us to obtain deviations with respect to the mean

for the observed group members. Pre-multiplying eq. (5) by Jr eliminates the group fixed effect and yields :

Jryr = ¯JrGryr + JrXr° + JrGrXr± + Jr²r (6)

Elementary linear algebra tells us that JrGr = − 1
mr−1Jr. Letting JrAr = A∗

r , we obtain

mr − 1 + ¯

mr − 1
y∗
r = X∗

r

(mr − 1)° − ±

mr − 1
+ ²∗r. (7)

which is equivalent to (3).
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To derive the conditional maximum likelihood estimator, we assume that the ²ir’s are i.i.d. N(0, ¾2). It

follows that, given Xr, mr, and nr, y∗
r follows a multivariate normal distribution with mean X∗

r
(mr−1)°−±
mr−1+¯ and

variance (¾ mr−1
mr−1+¯ )

2Jr.20 The log likelihood function can then be expressed as follows:

lnL = c+
R∑

r=1

(nr − 1) ln (mr − 1 + ¯)− N −R

2
ln

(
¾2

)

− 1

2¾2

R∑

r=1

(
mr − 1 + ¯

mr − 1
y∗
r −X∗

r

(mr − 1)° − ±

mr − 1

)′(mr − 1 + ¯

mr − 1
y∗
r −X∗

r

(mr − 1)° − ±

mr − 1

)
,

where c is a constant. This log likelihood function excludes any fixed effects. It is a conditional log likelihood

function as it is conditional on the sufficient statistics yr, (as well as on the Xr’s, the mr’s, and the nr’s), for

r = 1, ...R. Lee (2007) shows that the CML estimators of ¯, °, ± and ¾ are consistent and asymptotically

efficient under suitable regularity conditions and provided there is sufficient variation in group sizes.

3.2.2 2SLS and Generalized 2SLS estimators

Alternatively, the structural model (5) can be estimated by instrumental (IV) methods. To see how the methods

work, define a N×N block-diagonal matrix J = Diag(J1, ...,JR). Concatenating eq. (6) over all groups yields:

Jy = ¯JGy + JX° + JGX± + J².

where y (resp. X) is obtained by stacking the vectors yr (resp. the matrices Xr), for r = 1, ..., R. The

corresponding reduced-form is:

Jy = (I−¯G)−1(JX° + JGX±) + (I− ¯G)−1J².

If i /∈ Mri and there are at least three different group sizes,E[JGy∣X,G] is not perfectly collinear to (JX,JGX)

and the model is identified, see Bramoullé et al. (2009) for more details.21 In particular, with exactly three dif-

ferent group sizes and one relevant characteristic (family socioeconomic background), JG2X can be used as a

valid instrument for JGy and the model is just identified.22 When there are K > 1 relevant characteristics in

model (5) and exactly three different group sizes, there are 2K + 1 structural parameters and 3K reduced-form
20Note that only nr − 1 elements of ²∗r are linearly independent.
21Remarkably, the usual case of group interactions and the more complex case of network interactions can be analyzed within the same

formalism.
22In fact, JrGr = − 1

mr−1
Jr and JrG

2
r = 1

(mr−1)2
Jr , hence instruments are built here by premultiplying characteristics (in

deviation) by group-dependent weights and by stacking them across groups.
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parameters, so the model is over-identified. With l > 3 groups of different sizes and one relevant characteristic

(K = 1), the model is also over-identified and the instrument set includes (JG2X, JG3X, ...,JGl−1X).

One advantage of an IV approach over CML is that it requires less structure. Specifically, we do not assume

that errors are homoskedastic (though we assume that they are independent across groups). Also we do not

impose normality, nor use the structure on the error terms for identification purpose. Thus, identification in this

case is semi-parametric, or “distribution-free”.

In addition, we can obtain the “best” IV relatively easily from the structural model, see Lee (2007). The

idea is to first obtain consistent estimates of the parameters and then to use these estimates to build the best

possible instrumental variable. The procedure adapts Generalized 2SLS strategies proposed in Kelejian and

Prucha (1998) and refined in Lee (2003) to our current setting. It yields an asymptotically optimal estimator in

the class of IV estimators. More precisely, our first step consists in estimating a 2SLS as described above, by

using as instruments

S =
[
JX JGX JG2X

]
,

At this step, the model is overidentified, and we obtain µ̂
2SLS

= (X̃′PX̃)−1X̃′Py∗, where

X̃ =
[
JGy JX JGX

]

is the matrix of explanatory variables, P = S(S′S)−1S′ is the weighting matrix and, recall, y∗ = Jy. Then,

define µ = [ ¯ ° ± ]. The second step consists in estimating a 2SLS estimator using as instruments Ẑ =

Z(µ̂
2SLS

), with

Z(µ) =
[
E[JGy(µ) ∣ X,G] JX JGX

]
.

From the reduced-form equation, it follows that

E[JGy(µ) ∣ X,G] = G(I− ¯G)−1[J(X° +GX±)].

At this step, the model is just identified, and we obtain

µ̂
G2SLS

= (Ẑ′X̃)−1Ẑ′y∗.
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The variance matrix of the estimated parameters is consistently estimated by :

V̂ (µ̂
G2SLS

) = (Ẑ′X̃)−1Ẑ′DẐ(X̃
′
Ẑ)−1,

where D is an N ×N block-diagonal matrix with entries in each block r given by the products of the residuals

from this second step.

4 Data

We gathered for this analysis original data from the Quebec Government MERS. These administrative data pro-

vide detailed information on individual scores on standardized tests taken in June 2005 on four subjects (Math,

Sciences, French and History) by fourth and fifth grade secondary school students. They also include information

on the age, gender, language spoken at home and socioeconomic status of students. Sampling has been done in

two steps. The population of interest is the set of all fourth and fifth grade secondary school students who are

candidates to the MERS examinations in June 2005. This population is comprised of 152,580 students in total. In

the first step, a 75% random sample of secondary schools offering fourth and fifth grade classes in the 2004-2005

school year have been selected. In the second step, all fourth and fifth grade students in these schools have been

included. Overall, we have 194,553 individual test scores for 116,534 students.23

One limitation of these data is that we can only group students into grade-level within each school. On

the other hand, there are many advantages to its use. First, all 4th and 5th grade students must take these tests

to qualify for secondary school graduation. This means that our results do not pertain to a selected sample of

schools. In particular, both public and private school students have to take these tests. Another advantage is that

the tests are standardized, i.e., designed and applied uniformly within the province of Quebec. We use test results

gathered by the MERS, so there is less scope for measurement error with these data than with survey data on

grades. Finally, although survey data may have provided information on a larger set of covariates, sample sizes

in our study are larger than in typical school surveys.

Notwithstanding the limited information on the group of interaction, we know that in order to qualify for

a test a student should complete all coursework in the subject matter. This helps us to limit peer groups to the

population targeted by the tests. More specifically, we assume that the relevant reference group for a student

taking a test is comprised of all other students in the same school who are qualified to take the test in June 2005.
23A student can take more than one subject test.
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Two test sessions are offered for those who completed coursework in the Spring semester. We thus consider as

belonging to the same group all those who belong to the same school and who take a subject test in one of the

two consecutive sessions of June and August 2005. We know the number of students in each of these groups.

But we only observe test scores for the set of students who took the test in June. Therefore we do not always

observe the scores of all students within a group. We offered a correction for this problem in our discussion of

the econometric model, and our empirical results below incorporate this correction. In any case an overwhelming

majority of the students do take the tests in June, so the correction has little effect on the results.

We use for this study French, History, Science and Math test results as reported in the MERS administrative

data. Students in a regular track take History and Science tests in Secondary 4. The French test is commonly

taken in Secondary 5. For this test only, and because of the obvious impact of language spoken at home, we

also look at the subsample of students whose mother tongue and language spoken at home are the same as the

language of instruction (French2).24 Finally, we focus on students who take the Math test in Secondary 5 (Math

514). This completes their mathematical training for secondary school.25 We focus on this test in our analysis.

We provide descriptive statistics in Table 1. For each subject, the dependent variable in our econometric

model is the test score obtained in the provincial standardized test. The average score is between 70% and 75%

in French, Science and History tests. It is lower and about 62% in Math. In samples for which the regular track

for the test is Secondary 5 (resp. Secondary 4), the average age of students is close to 16 (resp. 15). Most students

taking French and Math (98% and 96%) are enrolled in Secondary 5. Most of those taking Science and History

are enrolled in Secondary 4 (92% and 96%). Between 52% and 55% of students are female, and between 11%

and 13% of students speak a language at home which is different from the language of instruction.26 Between 30

and 34% of students come from a relatively high socioeconomic background and between 40% and 42% from a

medium one.27

We observe test scores and characteristics of students taking the same test in June 2005. Sample sizes are

41, 778 for French, 54, 981 for Science, 15, 771 for Math, and 55, 057 for History. When we exclude students
24Thus, models estimated for this subsample assume that the interaction group is comprised of all other students in the same school

qualified to take the test in June 2005 and whose mother tongue and language spoken at home is similar to the language of instruction.
25The MERS administers a unique test to all secondary school students in French, History and Science. In contrast, it administers

different tests in Math, depending on academic options chosen early on by the students. We report here results for students following the
regular mathematical training (Math 514).

26The language of instruction is French in most schools, and English otherwise.
27We use an index of socio-economic status provided by the MERS. This index is computed from data from the 2001 census. It uses

information on the level of education of the mother (a weight of 2/3) and the job status of parents (weight of 1/3). Low socio-economic
status corresponds to the three lowest deciles of the index (high socio-economic status to the three highest deciles).
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whose mother tongue or language spoken at home is different from the language of instruction, the number of

observations for the French sample drops to 37, 143. We also observe the number of students who completed

coursework but postpone test-taking to August 2005. There are 118 (89) students postponing French (French2),

186 postponing History, 195 postponing Science, and 160 postponing Math. We observe between 307 and 382

peer groups depending on the subject matter considered. The average group size is between 50 (Math) and 146

(Science). The ratio between the number of groups and the average group size varies between 2.36 (French) and

7.23 (Math). These numbers are relatively small, which suggests that our estimates could be subject to weak

identification problems. The group size standard deviation is quite large, however, varying between 50 (in Math)

and about 135 (in Science and History). We expect such dispersion in group sizes to help identification. We

analyze these issues in more details in Section 6.

5 Empirical Results

5.1 Naive estimates

We first report naive OLS estimates in Table 2. These estimates provide a useful benchmark with which to

compare the results from our more sophisticated methods. We ignore here the two key econometric issues of

correlated unobservables and simultaneity, and simply regress individual test score on individual characteristics,

average score of peers and average characteristics of peers. So the OLS estimator is not consistent even under the

null of no correlated effects. The estimated impact of others’ test scores on one own test score is quite high (about

0.8) and statistically significant for all subjects. Also, most individual and contextual variables are significant.

Interestingly, individual and contextual effects corresponding to the same characteristic often have opposite signs.

We will see below that many of these features are not robust to addressing the main econometric issues.

5.2 CML estimates

We next report the results of CML estimation in Table 3. The model estimated is the linear-in-means model with

group fixed effects, individual impacts, and endogenous and contextual peer effects. We find that the estimated

endogenous peer effect lies between −0.24 and 0.83. It is significantly different from zero and positive for

French2 (ˆ̄ = 0.51), Math (ˆ̄ = 0.82), and History (ˆ̄ = 0.65). It is not significant for French (ˆ̄ = 0.33) and

for Science (ˆ̄ = −0.23). Note that for all subjects the endogenous effect is smaller that the one obtained using

a naive OLS. This is likely to reflect a positive correlation between unobservables and test scores. Such positive

correlation could emerge, for instance, from variations in teacher quality.
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How do these results compare with those obtained in other studies? As a number of other researchers (e.g.,

Carrell et al. 2008), we find that the endogenous peer effect on achievement is the largest in Math. This may

reflect the fact that Mathematics provide more opportunities for interactions among students. In Math, Hoxby

(2000a) reports a 0.1 to 0.55-point increase in own score in relation with a 1-point increase in mean score of

peers. Hanushek et al. (2003) show a 0.4-point increase in association with a 1-point increase in mean math

score of peers. Zimmer and Toma (2000) report an endogenous math peer effect lying between 0.6 and 0.8. On

the lowest side of the spectrum, Vigdor and Nechyba (2004) obtain an endogenous math peer effect of 0.07.28 So

our estimate lies on the high side of the range of previous estimates.

Most of the individual characteristics have a significant effect on test scores, and the signs of these effects

essentially conform to expectations. All test scores decrease significantly with age. Since older students have

often repeated a grade, being younger is a natural proxy for ability. Test scores are significantly higher for female

students than for male students, except for History where male students perform significantly better than female

students. This is broadly consistent with results from previous studies.29 The performance of foreign students

is, non surprisingly, significantly lower than for non-foreign students on the French test, but higher for Science

and History and not significantly different for Math. Secondary 5 students tend to perform significantly better

on all tests than Secondary 4 students, which reflects the positive impact of an additional year of schooling

on test scores. Finally, students from a higher socioeconomic category perform significantly better in all tests.

Interestingly, estimates of individual effects are close to the ones obtained from naive OLS regressions.

However, this is not the case as far as contextual variables are concerned. A few of these variables have a

significant impact on student performance. Average age of other students has a negative and significant effect

on all test scores except Math where it is positive but not significant. Proportion of other students enrolled in

Secondary 5 have a large positive and significant effect on own score in French. Peers’ socioeconomic back-

ground has little effect on own schooling performance. When significant, the magnitude of contextual effects is

always larger than the magnitude of individual effects. This is not surprising as it captures the effect of a unit

change of the characteristic of every other student in the group. Contrary to the OLS estimates, when significant,

contextual effects are in general of the same sign as the impact of the individual characteristic to which they

are associated.30 This is consistent, for instance, with situations where students work together and may pick up
28Kang (2007, p. 475) provide a more complete survey of endogenous peer effects in achievement in mathematics.
29For instance, results from the 2000 Program for International Student Assessment (PISA) show that Quebec female students perform

better than males on reading literacy tests but that the differences in performance on mathematics and science tests are smaller and not
significant, see Quebec Government (2001). Similarly, in our analysis, the difference in performance is quantitatively large in French but
much smaller in the other disciplines.

30The only exception is the proportion of other female students which has a negative effect on own performance in the French test.
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work habits of others. Thus, if older students exert less effort, being in a group with a higher proportion of older

students may lead to work less, and this may have a depressing effect on grades independent of the other peer

effects.

5.3 Reflection problem

We next take advantage of our framework to examine common ways of getting around the simultaneity problem

that do not rely on variations in group sizes. One such way is simply to impose that ¯ = 0 (no endogenous

effect). Thus, we estimate a model with individual and contextual effects only. In this case the CML estimator

is equivalent to a fixed effects OLS estimator. We report results in Table 4. We find that estimated coefficients

of individual characteristics are similar to those of the full CML model. However, estimates of contextual effects

are quite different. For instance, while a rise in own age is still associated with a decline in own test score, peers’

average age is now found to have a positive and significant effect on own test score for all tests.31 Of course, we

know from the CML estimation of the full model that the endogenous effect is significantly different from zero

for most subjects. Thus, imposing ¯ = 0 is not appropriate here, and the positive age contextual effect is likely

picking up the omitted endogenous effect. Note, however, that we need the results from the full estimation to

reach this conclusion.

Another possible way of addressing the simultaneity problem without exploiting group size variations is to

exclude at least one contextual variable from the outcome equation and to use it as an instrument for average test

score. We estimate a model similar to the one presented in Table 3 but with no contextual effects (i.e., imposing

± = 0); see Table 5. Using likelihood ratio tests, we reject the null of no contextual effects for History and the

two French samples but not for Science and Math. This suggests that the exclusion restrictions may be valid for

these other samples. Therefore, the ML estimators provided in Table 5 should be consistent and asymptotically

more efficient than those provided in Table 2 for the Science and Math tests. Observe again, however, that we

could not have known this a priori without an estimation of the full model.

Overall, this shows the interest of Lee’s solution to the reflection problem. Estimating a model with both

endogenous and contextual peer effects is needed to recover precisely the different types of peer effects at work.
31Note that the results presented in Table 4 cannot be interpreted as the coefficients of the reduced form of the model with endogenous

effect. Because of the nonlinear effect of group size on reduced form coefficients, ¯ is identified and the reduced forms for cases where
¯ = 0 and ¯ ∕= 0 differ. This stands in contrast to the analysis in Manski (1993).
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5.4 2SLS and G2SLS estimates

We next contrast IV and CML estimates. We present in Tables 6 and 7 the 2SLS and G2SLS estimation results

of the linear-in-means model of peer effects with group fixed effects, individual impacts, and endogenous and

contextual peer effects. In contrast to the CML estimates of Table 3, none of the endogenous effects is now

statistically significant. This is consistent with Lee’s (2007, p. 345) result that the asymptotic efficiency of IV

estimators is smaller than that of the CML. Estimated individual effects are quite similar to the corresponding

CML estimates. Some contextual effects are similar while others are different. For instance, the proportion of

other students in Secondary 5 still has a large and positive effect on own French score as well as no significant

effects for the other subjects. In contrast, average age among peers now has a positive and significant effect on

own score for most subjects, rather than a negative one. This could be explained by differences in small sample

properties of both methods, possibly aggravated by the imprecision in the estimation of the endogenous peer

effect.

Table 6 also reports two standard test results giving information on instrumental variables properties. We first

look at Sargan tests on the validity of the instruments and the over-identification restrictions of the model. We

do not reject the null for Science, Math and History, but we reject it for French (and French2). While this may

indicate a problem of model specification in these two last cases, one must be cautious in interpreting the test

given the likely low convergence of peer effects IV estimates. We then compute Stock and Yogo (2005)’s test

statistics on weak identification.32 Based on the definition that a group of instruments is weak when the bias of

the IV estimator relative to the bias of ordinary least squares exceeds a certain threshold b, say 5%, one rejects

the null that the instruments are weak for all subject matters.

6 Monte Carlo simulations

In this section, we study through simulations the effect of group sizes and their distribution on the precision and

bias of our estimates. Lee (2007) shows that the CML and IV estimators may converge in distribution at low rates

when the ratio between the number of groups and the average group size is small. Since this ratio varies between

2.36 and 7.23 in our samples, a problem of weak identification could in principle emerge. However, the standard

deviation of the distribution of group sizes is also relatively large, and we suspect that this helps identification.

To study these issues, we realize two simulation exercices. First, we vary group sizes in a systematic manner
32The Stock and Yogo test assumes that the instruments are valid, so it may be biased in the case of French and French2.
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and study how this affects the bias and precision of CML and IV estimators. We notably vary the group size

standard deviation and partly calibrate simulation parameters on our data. Second, we look at bias and precision

of estimates for fully calibrated simulations, when group sizes are exactly the same as in the data. Overall, while

our analysis confirms Lee’s earlier results, we also find a strong positive impact of the standard deviation of

group sizes on the strength of identification. Especially, conditional maximum likelihood performs well on fully

calibrated simulations. This indicates that the bias due to small sample issues is likely low in the results presented

in Table 3.

For each simulation exercise, we keep the number of observations fixed around 42, 000, and run 1, 000

replications. We first consider average sizes of 10, 20, 40, 80 and 120. We pick group sizes from the following

intervals with decreasing standard deviation:

∙ Average size of 10 : [3, 17], [5, 15], [7, 13] and [9, 11],

∙ Average size of 20 : [3, 37], [8, 32], [13, 27] and [18, 22],

∙ Average size of 40 : [3, 77], [12, 68], [21, 59], [30, 50] and [39, 41],

∙ Average size of 80 : [3, 157], [18, 142], [33, 127], [48, 112] and [63, 97],

∙ Average size of 120 : [3, 237], [28, 212], [53, 187], [78, 162] and [103, 137].

For each of the intervals described above, we proceed in the following manner:

1. pick a group size from a uniform distribution for which the support is defined by the minimum and maxi-

mum value of the interval;

2. truncate this value by eliminating its decimal portion;

3. repeat step 1 and 2 as long as the total number of observations is below or equal 42, 000.

To reduce computing time, we assume that all students have the same characteristics except for age and

gender. We assume that age follows a normal distribution and gender follows a Bernoulli distribution. We

calibrate the moments of these distributions on the sample of students taking the French test: average age is 16,

variance of age is 0.25, and proportion of girls is 0.55. Values of the structural parameters ¯, ° and ± are set to
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the estimated coefficients for the French test:

¯ = 0.35,

°age = −8, °gender = 3.8,

±age = −40, ±gender = −25.

We assume that the values of ² in the structural equation are drawn randomly from a normal distribution with

mean zero and variance ¾2 = 1. We generate the endogenous variable y from the reduced-form equation in

deviation form. We estimate the model using CML and IV (G2SLS).

Looking at Table 8, we first compare simulation results across average group sizes and then we examine

how estimators perform for a given average group size as variance in group size decreases. Separate horizontal

panels in Table 8 pertain to different values of average group size. We report the average estimated coefficient

and standard error by CML and G2SLS for the endogenous effect (first vertical panel), the exogenous effect

associated with age (second vertical panel) and the exogenous effect associated with gender (third vertical panel).

We find that even for the largest average group size (i.e., 120), both CML and IV perform well in terms of bias

and precision (first line in the last horizontal panel of Table 8). The biases of CML and IV get in general larger

as average group size increases. The CML estimate of the endogenous effect attains a plateau at the value 1,

while the IV estimate becomes rapidly larger (in absolute value) than 1. This is consistent with the fact that the

CML estimator tends towards the naive OLS estimator as group sizes become larger. In contrast, the bias on the

endogenous effect estimated by IV rapidly exceeds the bias of OLS. This is consistent with instruments becoming

less correlated to peer average outcome as group sizes increase. In general, peer effects are also less precisely

estimated in large groups than in small groups, regardless of the estimation method. But, for a given Monte Carlo

experiment, the magnitude of the bias and the loss in precision are always larger for IV than for CML.

Our main new result concerns the effect of group size dispersion. When we fix the value of the average

group size and reduce the length of the interval from which group sizes are picked, we find that the bias of both

CML and IV typically increases while the precision typically decreases. In Table 8, this amounts to looking at

each horizontal panel separately. Since we roughly pick group sizes from a uniform distribution holding average

group size fixed, reducing the interval’s length corresponds to a reduction in variance. Not surprisingly, bias of

IV rises more rapidly than bias of CML when the variance in group sizes is reduced, and the precision declines

more rapidly as well.
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We next fully calibrate the simulations’ parameters on the data, We use observed group sizes in the French

sample, calibrate the model parameters
{
¯, °age, °gender, ±age, ±gender

}
and moments of the explanatory vari-

ables as previously, and set the variance of the error term in the structural model equal to the estimated variance

in the French sample (¾̂2 = 154.7). Simulation results are reported in Table 9. The CML estimator has small

bias and standard error, while the IV estimator is not precisely estimated and the bias is large. These results

confirm what we obtained from picking group sizes at random; they show that dispersion in group sizes help

identification. Overall, this suggests that small sample bias may be relatively high in the IV estimates of Tables

6 and 7 but relatively low for the CML estimates of Table 3.

7 Conclusion

It is now well documented that identification of peer effects on student achievement is challenging because of the

difficulties to isolate them from other confounding effects. A number of studies have addressed this problem by

exploiting data where students are randomly assigned to groups or by imposing ad hoc exclusion restrictions on

the structural model determining student achievement. In this paper, we adopt a different identification strategy.

We provide the first empirical application of Lee (2007)’s novel approach, which shows that endogenous and

contextual peer effects can be identified when agents interact in groups and when there are sufficient variations

in group sizes. Correlated unobservables are allowed as long as they are fixed within each group. The model

is applied to original administrative data providing individual scores on standardized tests taken in June 2005

in four subjects by fourth and fifth grade secondary school students in the province of Quebec (Canada). The

results generally indicate that students benefit from their peers’ higher test scores. Thus, based on our conditional

maximum likelihood results, a point increase in the average test score of his peers increases a student’s test score

by 0.5 in French, 0.65 in History and 0.83 in Math. Contextual peer effects also matter. For instance, interacting

with older students usually has a negative and significant effect on scores. Overall, our analysis confirm the

interest of this new methodology to study peer effects with cross-section observational data. From a practical

standpoint, its main limitation is that it needs enough variation in group sizes to perform well. Our Monte-Carlo

simulations and empirical results show that the amount of variation present in our data is likely sufficient to obtain

reasonable estimates, thank to the typically high variance in school sizes.

Our research could be extended in many directions. It would be interesting to evaluate the validity of this

approach by using data where group membership is experimentally manipulated and group sizes are heterogenous

(as in Sacerdote 2001). Such data would also allow to test the validity of the structural model. It would also be
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interesting to analyze how group size variations may help to identify peer effects when the outcome is a discrete

variable (e.g., pass or fail). Brock and Durlauf (2001, 2007) have studied peer effects identification with discrete

outcomes but they ignore group size variations. A third potentially fruitful direction of research would be to

analyze and estimate a nonlinear version of Lee’s approach. For instance, student achievement could depend

on the mean and standard deviation of peers’ attributes. Overall, we think that this first empirical application

confirmed the interest of the method. Many more applications in different settings are needed, however, in order

to gain a thorough understanding of the method’s advantages, limitations, and applicability.
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Table 1: Descriptive statistics

Course Variable Mean S.D.
French Score 72.647 14.086
(Sec. 5) Age 16.142 0.488

Socio-ec. Index - -
Perc. High 0.328 0.469
Perc. Med. 0.409 0.492

Gender (Female=1) 0.549 0.500
Foreign 0.111 0.310
Secondary 5 0.985 0.120
Number of observations 41778
Number of groups 314
Avg. size of true groups 133.4 115.7
Avg. size of observed groups 133.1 115.4

French2 † Score 73.102 13.836
(Sec. 5) Age 16.118 0.450

Socio-ec. Index - -
Perc. High 0.333 0.470
Perc. Med. 0.417 0.493

Gender (Female=1) 0.551 0.497
Foreign - -
Secondary 5 0.986 0.120
Number of observations 37143
Number of groups 307
Avg. size of true groups 121.3 112.3
Avg. size of observed groups 121 112.1

Science Score 74.689 17.671
(Sec. 4) Age 15.255 0.610

Socio-ec. Index - -
Perc. High 0.338 0.470
Perc. Med. 0.402 0.490

Gender (Female=1) 0.527 0.499
Foreign 0.127 0.333
Secondary 5 0.077 0.267
Number of observations 54981
Number of groups 378
Avg. size of true groups 146.0 134.2
Avg. size of observed groups 145.5 133.7
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Table 1: Descriptive statistics (continued)

Course Variable Mean S.D.
Math †† Score 62.088 15.83
(Sec. 5) Age 16.272 0.574

Socio-ec. Index - -
Perc. High 0.303 0.460
Perc. Med. 0.400 0.490

Gender (Female=1) 0.540 0.498
Foreign 0.111 0.314
Secondary 5 0.957 0.202
Number of observations 15771
Number of groups 361
Avg. size of true groups 50.7 49.9
Avg. size of observed groups 49.9 49.7

History Score 70.156 17.280
(Sec. 4) Age 15.230 0.580

Socio-ec. Index - -
Perc. High 0.337 0.473
Perc. Med. 0.403 0.491

Gender (Female=1) 0.533 0.499
Foreign 0.127 0.333
Secondary 5 0.044 0.205
Number of observations 55057
Number of groups 382
Avg. size of true groups 144.6 134.8
Avg. size of observed groups 144.1 134.5

† The groups include only students for whom Foreign=0, that is, whose language of instruction is the same as the mother
tongue and the language spoken at home.
†† Math refers to Math 514 (Secondary 5 regular course).
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Table 2: Peer Effects on Scholar Achievementa

Naive OLS

French French2b Sciences Math History
Endogenous effect 0.845** 0.828** 0.899** 0.831** 0.858**

(0.015) (0.016) (0.011) (0.018) (0.012)
Individual effects

Constant 102.916** 127.535** 115.048** 96.252** 137.010**
(10.114) (10.994) (9.450) (5.588) (7.456)

Age -7.440** -8.112** -7.819** -4.376** -7.294**
(0.152) (0.170) (0.150) (0.214) (0.140)

Socio-ec. (High) 1.344** 1.350** 1.592** 1.562** 2.126**
(0.209) (0.224) (0.228) (0.397) (0.227)

Socio-ec. Index (Medium) 0.716** 0.763** 0.676** 0.833** 0.893**
(0.182) (0.195) (0.198) (0.329) (0.197)

Gender (Female=1) 3.993** 4.182** 0.252* 0.750** -1.512**
(0.127) (0.132) (0.138) (0.233) (0.136)

Foreign -2.368** - 2.150** 0.047 0.567**
(0.263) (-) (0.255) (0.460) (0.254)

Secondary 5 9.408** 8.967** 1.294** 6.798** 2.557**
(0.736) (0.795) (0.310) (0.659) (0.348)

Contextual effects
Age 2.101** 1.391** 0.781 -0.987** -1.038**

(0.581) (0.634) (0.632) (0.305) (0.471)
Socio-ec. (High) -1.841** -1.791** -2.239** -2.003** -2.896**

(0.351) (0.367) (0.385) (0.602) (0.377)
Socio-ec. Index (Medium) -1.227** -1.219** -0.902** -0.320 -1.179**

(0.384) (0.394) (0.416) (0.653) (0.414)
Gender (Female=1) -4.324** -4.292** -1.435** -0.028 0.814

(0.528) (0.564) (0.497) (1.089) (0.534)
Foreign 3.416** - -0.667 2.247** 0.913**

(0.435) (-) (0.455) (0.807) (0.445)
Secondary 5 -14.306** -15.121** 9.992** -5.706** 10.037**

(1.469) (1.734) (1.567) (1.396) (1.897)

Notes:
Standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
bThe groups include only students for whom Foreign=0, that is, whose language of instruction is the same as the mother
tongue and the language spoken at home.
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Table 3: Peer Effects on Student Achievementa

Conditional Maximum Likelihood

French French2b Science Math History
Endogenous effect 0.330 0.511* -0.239 0.827** 0.650**

(0.328) (0.312) (0.234) (0.249) (0.272)
Individual effects

Age -7.999** -8.707** -8.293** -4.868** -7.942**
(0.162) (0.174) (0.151) (0.271) (0.151)

Socio-ec. Index (High) 1.423** 1.505** 1.609** 2.112** 2.019**
(0.245) (0.267) (0.268) (0.500) (0.261)

Socio-ec. Index (Medium) 0.669** 0.772** 0.785** 1.189** 0.795**
(0.220) (0.241) (0.230) (0.435) (0.234)

Gender (Female=1) 3.807** 4.114** 0.319** 1.018** -1.641**
(0.162) (0.160) (0.158) (0.301) (0.159)

Foreign -2.596** - 2.095** -0.081 0.807**
(0.279) (-) (0.278) (0.548) (0.284)

Secondary 5 10.520** 9.458** 1.652** 6.474** 3.127**
(0.676) (0.673) (0.328) (0.767) (0.399)

Contextual effects
Age -39.302** -34.174** -19.554** 0.838 -31.569**

(10.991) (8.892) (8.338) (7.382) (9.471)
Socio-ec. Index (High) 16.506 23.069 8.934 29.310* -6.411

(17.534) (18.110) (22.453) (15.580) (18.948)
Socio-ec. Index (Medium) -4.916 2.251 22.144 18.246 -6.750

(16.875) (17.433) (17.782) (13.726) (18.566)
Gender (Female=1) -25.019* -8.069 14.855 15.558 -11.821

(14.397) (11.480) (12.178) (9.491) (12.413)
Foreign -26.681* - -8.851 -2.654 29.208

(15.865) (-) (16.952) (12.143) (18.008)
Secondary 5 167.966** 67.021** -0.343 -6.080 24.068

(41.189) (28.798) -19.955 (26.056) (21.167)
Log-likelihood -162548.55 -143890.84 -226078.18 -62420.96 -226216.11

Notes:
Standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
bThe groups include only students for whom Foreign=0, that is, whose language of instruction is the same as the mother
tongue and the language spoken at home.
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Table 4: Peer Effects on Scholar Achievementa

OLS Estimation with Group Fixed Effects and no endogenous effectb

French French2c Sciences Math History
Individual effects

Age -7.572** -8.169** -7.994** -4.565** -7.451**
(0.150) (0.168) (0.146) (0.215) (0.139)

Socio-ec. (High) 1.417** 1.635** 1.756** 1.933** 2.001**
(0.233) (0.267) (0.257) (0.442) (0.245)

Socio-ec. Index (Medium) 0.660** 0.856** 0.832** 1.217** 0.802**
(0.208) (0.243) (0.231) (0.378) (0.222)

Gender (Female=1) 3.831** 4.084** 0.328** 0.975** -1.540**
(0.171) (0.160) (0.162) (0.270) (0.159)

Foreign -2.555** - 2.206** 0.104 0.977**
(0.284) (-) (0.280) (0.507) (0.275)

Secondary 5 10.087** 9.469** 1.513** 6.648** 2.900**
(0.789) (0.817) (0.327) (0.765) (0.370)

Contextual effects
Age 6.615** 9.093** 12.133** 7.036** 14.267**

(2.286) (1.642) (1.106) (1.489) (0.959)
Socio-ec. (High) 15.215 38.375** 30.030 19.537** -13.348

(13.792) (17.336) (18.261) (9.417) (12.885)
Socio-ec. Index (Medium) -6.389 11.013 26.551 20.022** -9.021

(12.893) (16.853) (17.505) (8.462) (14.325)
Gender (Female=1) -20.917 -11.185 14.660 13.342** 0.238

(16.487) (11.264) (13.138) (6.220) (12.001)
Foreign -23.074* - 5.688 3.540 49.751**

(12.190) (-) (14.438) (7.625) (12.064)
Secondary 5 106.712** 59.504** -2.889 4.864 13.204

(36.935) (24.882) (18.320) (23.402) (17.280)

Notes:
Standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
bThe groups include only students for whom Foreign=0, that is, whose language of instruction is the same as the mother
tongue and the language spoken at home.

29



Table 5: Peer Effects on Student Achievementa

Likelihood Ratio Tests - Contextual Effects (Estimates from the restricted model)

French French2b Science Math History
Endogenous effect 0.438 0.644** -0.070 0.779** 0.701**

(0.326) (0.310) (0.229) (0.239) (0.269)
Individual effects

age -7.698** -8.385** -8.150** -4.882** -7.706**
(0.136) (0.151) (0.137) (0.220) (0.134)

Socio-ec. Med 1.324** 1.332** 1.539** 1.534** 2.072**
(0.209) (0.222) (0.227) (0.401) (0.228)

Socio-ec. High 0.702** 0.750** 0.637** 0.794** 0.848**
(0.179) (0.191) (0.195) (0.334) (0.196)

Gender 3.991** 4.189** 0.224 0.708** -1.562**
(0.126) (0.132) (0.137) (0.238) (0.137)

Foreign -2.372** - 2.154** -0.001 0.575**
(0.244) (-) (0.246) (0.459) (0.246)

Secondary 5 9.222** 8.875** 1.616** 6.597** 2.929**
(0.583) (0.608) (0.302) (0.637) (0.366)

Non-restricted log-likelihood -162548.55 -143890.84 -226078.18 -62420.961 -226216.11
Restricted log-likelihood -162567.89 -143905.42 -226082.99 -62424.425 -226223.58
Likelihood ratio 38.691259 29.162129 9.6197715 6.9264363 14.939641

Notes:
Standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
bThe groups include only students for whom Foreign=0, that is, whose language of instruction is the same as the mother
tongue and the language spoken at home.
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Table 6: Peer Effects on Student Achievementa

2SLS Estimation with Group Fixed Effectb

French French2c Sciences Math History
Endogenous effect 1.378 1.580 -0.509 -0.037 0.787

(1.468) (1.456) (0.764) (0.477) (0.980)
Individual effects

Age -7.690** -8.359** -7.962** -4.606** -7.609**
(0.197) (0.232) (0.167) (0.228) (0.163)

Socio-ec. Index (High) 1.373** 1.458** 1.754** 1.836** 2.041**
(0.242) (0.248) (0.250) (0.423) (0.248)

Socio-ec. Index (Medium) 0.661** 0.716** 0.826** 1.069** 0.803**
(0.221) (0.234) (0.219) (0.365) (0.221)

Gender (Female=1) 3.871** 4.103** 0.333** 0.965** -1.553**
(0.164) (0.159) (0.159) (0.265) (0.157)

Foreign -2.514** - 2.128** -0.005 0.716**
(0.282) (-) (0.270) (0.496) (0.276)

Secondary 5 9.516** 9.022** 1.415** 6.674** 2.910**
(0.781) (0.840) (0.327) (0.741) (0.390)

Contextual effects
Age 4.205 4.669 13.496** 6.713** 8.552**

(4.845) (4.268) (3.050) (1.712) (4.036)
Socio-ec. Index (High) 7.364 17.348 30.997* 15.962** -6.246

(17.305) (13.585) (16.678) (7.641) (15.620)
Socio-ec. Index (Medium) -7.103 -5.423 26.344* 13.501* -8.047

(16.813) (16.138) (13.908) (7.555) (14.598)
Gender (Female=1) -21.310* -15.413 15.637 13.237** 0.567

(12.261) (10.472) (12.202) (5.808) (11.708)
Foreign -15.732 - -2.232 -0.065 19.385

(12.571) (-) (11.449) (7.189) (12.903)
Secondary 5 40.184 16.768 -17.370 7.825 2.537

(36.380) (37.192) (14.470) (21.360) (23.060)
Sargan Test 23.52 14.17 0.54 1.40 5.35
[ p-value ] [0.00] [0.03] [1.00] [0.97] [0.50]
Stock and Yogo Test 706.84 612.93 1055.92 464.43 660.40
[ Critical Value for b=0.05
at sign. level of 5%] [18.37] [18.37] [18.37] [18.37] [18.37]

Notes:
Standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
bThe groups include only students for whom Foreign=0, that is, whose language of instruction is the same as the mother
tongue and the language spoken at home.
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Table 7: Peer Effects on Student Achievementa

Generalized 2SLS Estimationb

French French2c Sciences Math History
Endogenous effect -2.104 -3.882 -0.015 -0.162 -2.753

(3.619) (2.661) (0.734) (0.465) (1.717)
Individual effects

Age -7.390** -7.783** -8.012** -4.582** -7.306**
(0.348) (0.322) (0.165) (0.227) (0.203)

Socio-ec. Index (High) 1.542** 1.540** 1.718** 1.844** 2.222**
(0.293) (0.237) (0.251) (0.421) (0.250)

Socio-ec. Index (Medium) 0.867** 0.914** 0.803** 1.080** 0.921**
(0.293) (0.232) (0.220) (0.362) (0.219)

Gender (Female=1) 3.770** 4.046** 0.318** 0.966** -1.536**
(0.186) (0.153) (0.161) (0.264) (0.150)

Foreign -2.568** - 2.144** 0.006 0.642**
(0.283) (-) (0.273) (0.494) (0.268)

Secondary 5 9.797** 9.663** 1.471** 6.701** 2.560**
(0.799) (0.837) (0.327) (0.739) (0.393)

Contextual effects
Age 15.211 21.620** 11.514** 7.014** 22.639**

(11.684) (8.190) (2.967) (1.646) (6.808)
Socio-ec. Index (High) 31.802 29.153** 25.140 16.299** 25.748

(30.455) (11.765) (16.904) (7.431) (18.608)
Socio-ec. Index (Medium) 21.574 21.694 23.091 14.010* 10.015

(31.981) (17.288) (14.514) (7.338) (14.788)
Gender (Female=1) -20.267* 0.403 13.639 13.265** -1.936

(11.040) (12.140) (12.713) (5.676) (9.533)
Foreign -28.226 - -1.320 0.354 9.226

(18.593) (-) (12.377) (7.041) (12.411)
Secondary 5 79.885* 90.818** -12.062 9.953 -31.537

(46.845) (42.242) (15.235) (21.115) (20.155)

Notes:
Standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
bThe groups include only students for whom Foreign=0, that is, whose language of instruction is the same as the mother
tongue and the language spoken at home.
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Table 9: Simulations Calibrated on French Sample

(1000 replications)

CML 2SLS G2SLS OLS
Endogenous effect 0.391 -0.873 0.495 -33.571

(0.101) (0.852) (167.702) (3.688)
Individual effects

Age -8.002 -7.920 -8.006 -5.758
(0.145) (0.149) (10.021) (0.545)

Gender (Female=1) 3.798 3.822 3.828 4.480
(0.147) (0.139) (1.693) (0.554)

Exogenous effects
Age -39.996 -38.085 -39.540 17.373

(9.996) (7.579) (167.394) (76.788)
Gender (Female=1) -25.329 -16.703 -21.857 210.526

(10.733) (10.092) (692.625) (74.714)
Notes: Average standard errors are in parentheses. The group sizes are calibrated
on our French sample. ¾2 = ¾̂2 (calibrated)= 154.704. The other parameters are
calibrated as in Table 8.
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